Make-up Midterm Examination
 Partial Differential Equations (MATH4220)
 (Academic Year 2022/2023, Second Term)

Date: March 30, 2023.
Time allowed: 14:30-16:15.

1. Consider the following four questions.
(a) (5 points) State the definition of a well-posed PDE problem.
(b) (5 points) What is the type of this equation

$$
\partial_{t}^{2} u+\partial_{t x}^{2} u-2 \partial_{x}^{2} u=0
$$

(c) (5 points) Solve the problem

$$
\partial_{t} u+4 \partial_{x} u-2 u=0, \quad \text { with } u_{\mid t=0}=x^{2}
$$

(d) (5 points) Find all the solutions to

$$
\partial_{x} u-2 \partial_{y} u+2 u=1
$$

2. Let Ω be a bounded, connected, open set of \mathbb{R}^{3}. We say that $v \in C^{2}(\bar{\Omega})$ is harmonic if

$$
-\Delta v=0, \quad \text { on } \Omega
$$

(a) (10 points) State and prove the mean-value property of harmonic function.
(b) (10 points) Show that $\max _{\bar{\Omega}} v(x)=\max _{\partial \Omega} v(x)$.
3. We shall consider functions $h=h(t, x):[0, \infty) \times \mathbb{R} \rightarrow(0, \infty)$ which are 2π-periodic with respect to x, belong to $C^{\infty}([0, \infty) \times \mathbb{R})$ and satisfy the 1 D mean-curvature equation

$$
\partial_{t} h-\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}}=0, \quad \text { in }(0, \infty) \times \mathbb{R}
$$

We are interested in finding quantities that are non-increasing along the solution flow.
(a) (10 points) Show that

$$
\partial_{x}\left(\frac{\partial_{x} h}{\sqrt{1+\left|\partial_{x} h\right|^{2}}}\right)=\frac{\partial_{x}^{2} h}{\left(1+\left|\partial_{x} h\right|^{2}\right)^{\frac{3}{2}}},
$$

and then deduce that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{2 \pi} \sqrt{1+\left|\partial_{x} h\right|^{2}} \mathrm{~d} x \leq 0
$$

Hint: Using the structure of mean-curvature equation, and then integration by parts.
(b) (10 points) Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{2 \pi}\left|\partial_{x} h\right|^{2} \mathrm{~d} x \leq 0
$$

(c) (i) (10 points) Show that

$$
\partial_{t} h-\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}}=\partial_{t} h-\partial_{x}\left(\arctan \left(\partial_{x} h\right)\right),
$$

and then deduce that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{2 \pi} h^{2} \mathrm{~d} x \leq 0
$$

(ii) (10 points) Show that

$$
\partial_{t}\left(\left(\partial_{x} h\right) \arctan \left(\partial_{x} h\right)\right)=\left(\arctan \left(\partial_{x} h\right)+\frac{\partial_{x} h}{1+\left|\partial_{x} h\right|^{2}}\right) \partial_{x}\left(\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}}\right),
$$

and then deduce that

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \int_{0}^{2 \pi} h^{2} \mathrm{~d} x \geq 0
$$

(iii) (10 points) Show that

$$
\partial_{t}^{2} h=\partial_{x}\left(\frac{\partial_{t x} h}{1+\left|\partial_{x} h\right|^{2}}\right) .
$$

(iv) (10 points) Prove that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{2 \pi}\left|\partial_{t} h\right|^{2} \mathrm{~d} x \leq 0
$$

and then deduce that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{2 \pi}\left(\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}}\right)^{2} \mathrm{~d} x \leq 0
$$

